LETTERS 2011 Vol. 13, No. 8 2038–2041

ORGANIC

"Click"-Capture, Ring-Opening Metathesis Polymerization (ROMP), Release: Facile Triazolation Utilizing ROMP-Derived Oligomeric Phosphates

Toby R. Long,† Saqib Faisal,†,‡ Pradip K. Maity,† Alan Rolfe,† Ryan Kurtz,† Sarra V. Klimberg,[†] Muhammad-Rabbie Najjar,[†] Fatima Z. Basha,[‡] and Paul R. Hanson*,[†]

Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States, The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034 Becker Drive,

Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States, and H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Science, University of Karachi, Karachi, Pakistan

phanson@ku.edu

Received February 16, 2011

Soluble, high-load ring-opening metathesis polymerization (ROMP)-derived oligomeric triazole phosphates (OTP) are reported for application as efficient triazolating reagents of nucleophilic species. Utilizing a "Click"-capture, ROMP, release protocol, the efficient and purification-free, direct triazolation of N-, O-, and S-nucleophilic species was successfully achieved. A variety of OTP derivatives were rapidly synthesized as free-flowing solids on a multigram scale from commercially available materials.

Rapid access to collections of diverse molecules in desirable quantities and purity for high-throughput screening is an important challenge in drug discovery. In this regard, methods that integrate synthesis and purification have become powerful tools in the arena of facilitated synthesis.^{1,2} This has been driven in recent years by the development of an array of polymer-bound reagents and scavengers for utilization in streamlined protocols to access small molecule libraries.2 Despite huge advances in this area, limitations in nonlinear reaction kinetics (heterogeneous reactions), low resin-load capacities, means of distributing reagents, and solution phase automation technology continue to warrant the development of designer polymers for library production.³ To this effect,

[†] University of Kansas.

[‡] University of Karachi.

^{(1) (}a) Booth, R. J.; Hodges, J. C. Acc. Chem. Res. 1999, 32, 18–26. (b) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815–4195. (c) Kirschning, A.; Monenschein, H.; Wittenberg, R. Angew. Chem., Int. Ed. 2001, 40, 650–679. (d) Eames, J.; Watkinson, M. Eur. J. Org. Chem. 2001, 1213– 1224. (e) Strohmeier, G. A.; Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 621–624. (f) Lesch, B.; Thomson, D. W.; Lindell, S. D. Comb. Chem. High. Throughput Screening 2008, 11, 31–36.

⁽²⁾ For reviews concerning soluble polymers, see: (a) Gravert, D. J.; Janda, K. D. Chem. Rev. 1997, 97, 489–509. (b) Toy, P. H.; Janda, K. D. Acc. Chem. Res. 2000, 33, 546-554. (c) Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem. Rev. 2002, 102, 3325–3344. (d) Haag, R. Chem.-Eur. J. 2001, 7, 327–335. (e) Haag, R.; Sunder, A.; Hebel, A.; Roller, S. J. Comb. Chem. 2002, 4, 112–119. (f) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345–3384. (g) Bergbreiter, D. E.; Tian, J.; Hongfa, C. Chem. Rev. 2009, 109, 530–582.

^{(3) (}a) Studer, A.; Curran, D. P. Tetrahedron 1997, 53, 6681–6696. (b) Hjerten, S.; Li., Y.-M.; Liao, J. L.; Mankazato, K.; Mohammad, J.;
Pettersson, G. *Nature* **1992**, 356, 810–811. (c) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.; Smith, C. D. Org. Biomol. Chem. 2008, 6, 1577–1586.

a variety of reagents and scavengers possessing tunable properties have emerged from ring-opening metathesis polymerization (ROMP) technology.⁴⁻⁶ We herein report the development of a new ROMP-derived oligomeric triazole phosphate (OTP) for application as a soluble, efficient triazolating reagent of nucleophilic species. Overall, these reagents are free-flowing solids that are easy to handle, nontoxic, soluble, and air stable. In addition, they are easily stored long-term at room temperature and are readily prepared, vide infra, from commercially available starting materials on a multigram scale.

The development of new methodolgies for the diversification of biologically interesting core scaffolds with functional handles is of paramount importance. In this regard, triazoles and their derivatives have demonstrated a wide variety of biological activity, with many reports focusing on antifungal activity.7 Despite this activity, the utilization of solution phase or immobilized reagents to directly triazolate nucleophilic species in a one-step protocol has been limited to reports of a two-step, one-pot propargylation-click protocol.⁸

Oligomeric and polyphosphates are ideal immobilized leaving groups due to the inherint pK_a , stability and innate leaving group properties of phosphate anions. $9-11$ Recently, we reported the generation and application of

(6) Vedantham, P.; Zhang, M.; Gor, P. J.; Huang, M.; Georg, G. I.; Lushington, G. H.; Mitscher, L. A.; Ye, Q.-Z.; Hanson, P. R. J. Comb. Chem. 2008, 10, 195–203.

(7) (a) Xia, Y.; Qu, F.; Peng, L. Rev. Med. Chem. 2010, 10, 806–821. (b) Cronin, S.; Chandrasekar, P. H. J. Antimicrob. Chemother. 2010, 65, 410–416. (c) Nivoix, Y.; Ubeaud-Sequier, G.; Engel, P.; Leveque, D.; Herbrecht, R. Curr. Drug Metab. 2009, 10, 395–409.

(8) (a) Inverrarity, I. A.; Hulme, A. N. Org. Biomol. Chem. 2007, 5, 636–643. (b) Smith, G.; Glaser, M.; Perumal, M.; Nguyen, Q.-D.; Shan, B.; Aarstad, E.; Aboagye, E. O. J. Med. Chem. 2008, 51, 8057–8067.

(9) (a)Manfredini, T.; Pellacani, G. C.; Pozzi, P.; Corradi, A. B. Appl. Clay Sci. 1990, 5, 193–201. (b) Best, M. D.; Zhang, H.; Prestwich, G. D. Nat. Prod. Rep. 2010, 27, 1403-1430. (c) Fylaktakidou, K. C.; Duarte, C. D.; Koumbis, A. E.; Nicolau, C.; Lehn, J.-M. Chem. Med. Chem. $2011, 6, 153-168$ and references cited therein.

(10) Long, T. R.; Maity, P. K.; Samarakoon, T. B.; Hanson, P. R. Org. Lett. 2010 , 12 , $2904-2907$ and references cited therein.

(11) (a) Nicolaou, K. C.; Shi, G. Q.; Gunzner, J. L.; Gaertner, P.; Yang, Z. J. Am. Chem. Soc. 1997, 119, 5467–5468. (b) La Cruz, T. E.; Rychnovsky, S. D. J. Org. Chem. 2007, 72, 2602–2611. (c) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160–4163. (d) Westheimer, F. H. Science 1987, 236, 1173–1178. (e) Thomas, C. D.; Hanson, P. R. In Metathesis in Natural Product Synthesis; Cossy, J., Areniyadis, S., Meyer, C., Ed.: Wiley-VCH: Weinheim, 2010; pp 129–144. (f) Beaucage, S. L.; Caruthers, M. H. Bioorganic Chemistry: Nucleic Acids; Hecht, S. M., Ed.; Oxford University Press: New York, 1996; Chapter 2, pp 36-74.

oligomeric benzyl phosphate (OBP) as an efficient benzylating reagent.¹⁰ We now report the synthesis of ROMPderived triazolating reagents (OTP) for application in purification-free diversifications of nucleophilic species using the title method, termed "Click"-Capture, ROMP, Release. This method utilizes a propargyl-tagged norbornenyl-phosphate to capture an azide in a classical "click" reaction, followed by ROM polymerization to generate the desired soluble oligomeric triazole reagent (OTP) 4. Subsequent release via S_N^2 displacement with nucleophilic species yields triazolated products along with the spent oligomeric phosphate that is readily sequestered via precipitation (Figure 1).

Figure 1. Reaction of oligomeric triazole phosphate (OTP) 4.

The synthesis of the oligomeric triazole phosphate bearing a 4-MeOPh group, OTP 4a, starts with the exonorbornenyl tagged (Nb-tagged) phosphonyl chloride 1 utilized in the synthesis of previously reported ROMP-derived benzylating reagent OBP.^{10,12} Phosphorylation of propargyl alcohol with Nb-tagged phosphonyl chloride 1, followed by a "Click"-capture event of the corresponding azide, yields the desired monomer 3a in an efficient fashion. ROM polymerization of monomer 3a was achieved with $RuCl₂(PCy₃)₂=CHPh (cat. A), followed by basic workup$

Scheme 1. Synthesis of Oligomeric Triazole Phosphate (OTP) 4a

^{(4) (}a) Barrett, A. G. M.; Hopkins, B. T.; Kobberling, J. Chem. Rev. 2002, 102, 3301–3324. (b) Harned, A. M.; Probst, D. A.; Hanson, P. R. In Handbook of Metathesis; Grubbs, R. H., Ed.: Wiley-VCH: Weinheim, 2003; Vol. 2, pp 361-402. (c) Flynn, D. L.; Hanson, P. R.; Berk, S. C.; Makara, G. M. Curr. Opin. Drug Discovery Dev. 2002, 5, 571–579. (d) Harned, A. M.; Zhang, M.; Vedantham, P.; Mukherjee, S.; Herpel, R. H.; Flynn, D. L.; Hanson, P. R. Aldrichimica Acta 2005, 38, 3–16.

^{(5) (}a) Rolfe, A.; Loh, J. K.; Maity, P. K.; Hanson, P. R. Org. Lett. 2011, 1, 4–7. (b) Maity, P.; Rolfe, A.; Samarakoon, T. B.; Faisal, S.; Kurtz, R.; Long, T. R.; Schätz, A.; Flynn, D.; Grass, R. N.; Stark, W. J.;
Reiser, O.; Hanson, P. R. *Org. Lett.* **2011**, *I*, 8–10. (c) Rolfe, A.; Probst, D.; Volp, K.; Omar, I.; Flynn, D.; Hanson, P. R. J. Org. Chem. 2008, 73, 8785–8790. (d) Stoianova, D. S.; Yao, L.; Rolfe, A.; Samarakoon, T.;
Hanson, P. R. *Tetrahedron Lett.* **2008**, 49, 4553–4555. (e) Zhang, M.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2007, 72, 3194–3198. (f) Roberts, R. S. J. Comb. Chem. 2005, 7, 21-32. (g) Harned, A. M.; Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. Tetrahedron 2005, 61, 12093-12099. (h) Arstad, E.; Barrett, A. G. M.; Tedeschi, L. Tetrahedron Lett. 2003, 44, 2703–2707. (i) Barrett, A. G. M.; Hopkins, B. T.; Love, A. C.; Tedeschi, L. Org. Lett. 2004, 6, 835–837.

utilizing the Pederson protocol.^{13,14} Precipitation via dropwise addition into anhydrous $Et₂O$ afforded the corresponding oligomeric triazole phosphate (OTP_{20}) 4a as a free-flowing white solid possessing a theoretical load of 2.4 mmol/g (Scheme 1).

Investigation into the utilization of OTP 4a as a direct triazolating reagent was next studied using reaction conditions reported for the application of OBP.¹⁰ After optimization of reaction conditions for the triazolation of 2,4 dichlorophenol utilizing OTP 4a, the corresponding triazole ether, 5a, was isolated in excellent yield (99%) and crude purity ($> 90\%$) using simple filtration through a Celite SPE (Scheme 2).

Table 1. Triazolation of N-, O-, and S-Nucleophiles Using OTP₂₀ 4a^{a}

^{*a*}OTP **4a** utilized as a 20-mer. ^{*b*} Purities >90% observed for all reactions using both GC and ¹H NMR.

The application of OTP 4a as an efficient triazolating reagent was extended to a variety of N-, O-, and Snucleophilic species (Table 1). Initially, a variety of phenols were utilized (Table 1, entries $1-3$) though reduced yields were observed for sterically hindered napthalene-1-ol.

In addition to phenols, thiophenols (Table 1, entry 5) and a variety of amines (Table 1, entries $6-10$) were successfully utilized to release the corresponding triazole in $>90\%$

 a ^{a}Yields corresponding to metathesis of corresponding monomers.

Table 3. Triazolation Utilizing OTP Derivatives $4a-g^a$

^a OTP $4a-g$ utilized as a 20-mer. b Purities $> 90\%$ observed for all reactions using both GC and ¹H NMR.

crude purity. Building on the success of OTP 4a, a variety of additional OTP derivatives 4b-4i were synthesized as free-flowing powders on a gram scale from ROM polymerization of their corresponding monomers utilizing cat. A (Table 2).

With a variety of OTP 4 derivatives in hand, the triazolation of both naphthalene-1-ol and N-ethylnaphthalen-1 amine with OTP derivatives $4a-g$ was investigated (Table 3). All reactions proceeded with good yields with $>90\%$ crude purity after Celite SPE to remove the spent oligomer.

In conclusion, we have developed and demonstrated the synthesis and utilization of oligomeric triazole phosphates for direct triazolation of N-, O- and S-nucleophilic species in a "Click"-capture, ROMP, release protocol. These oligomeric reagents are readily synthesized on a multigram scale from commercially available materials as soluble, high-load, free-flowing powders. The application of OTP in the diversification of core scaffolds for the synthesis of diverse collections of small molecules is underway and will be reported in due time.

Acknowledgment. This investigation was generously supported by the National Institute of General Medical Sciences (NIH P050-GM069663 and NIH-STTR R41 GM076765) with additional funds from the State of Kansas. We would like to also thank Materia, Inc. for supplying the metathesis catalyst and helpful discussions.

Supporting Information Available. Detailed experimental procedures and tabulated ${}^{1}H$ NMR, ${}^{13}C$ NMR, ${}^{31}P$ NMR, FTIR, and mass data and ¹H NMR spectra of products obtained by the described methods. This material is available free of charge via the Internet at http:// pubs.acs.org.

⁽¹²⁾ Craig, D. J. Am. Chem. Soc. 1951, 73, 4889–4892.

^{(13) (}a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100–110. (b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039–2041.

⁽¹⁴⁾ Pederson, R. L.; Fellows, I. M.; Ung, T. A.; Ishihara, H.; Hajela, S. P. Adv. Synth. Catal. 2002, 344, 728–735.